Самообразование
Главная > 2016: ЕГЭ, ОГЭ Математика, Физика > ОГЭ 2016. Математика, И.В. Ященко. Типовые экзаменационные варианты (36 вариантов)

Вариант 20. Задание 25. ОГЭ 2016 Математика, И.В. Ященко. 36 вариантов. Решение

Задание 25. В выпуклом четырёхугольнике ABCD углы ABD и ACD равны. Докажите, что углы DAC и DBC также равны.

Решение.

Проведем в четырехугольнике диагонали AC и BD и отметим точку E на их пересечении. Рассмотрим треугольники ABE и DEC, у которых равны углы  по условию задачи, а также равны углы  как вертикальные. Таким образом, треугольники ABE и DEC подобные по двум углам с пропорциональными сторонами BE и CE, а также AE и DE. Рассмотрим теперь треугольники AED и BEC, у которых сторона AE пропорциональна стороне DE, а сторона BE пропорциональна стороне CE, кроме того, равны углы  как вертикальные. Отсюда следует, что треугольники AED и BEC подобны по двум соответствующим пропорциональным сторонам и углу между ними. Так как у подобных треугольников соответствующие углы равны, то угол . Утверждение доказано.

Автор: С.М. Балакирев
Формат книги: pdf
Дата написания: 2017 г.
Объем: 70 стр.
Темы раздела