Самообразование
Главная > 2016: ЕГЭ, ОГЭ Математика, Физика > ОГЭ 2016. Математика, И.В. Ященко. Типовые экзаменационные варианты (36 вариантов)

Вариант 17. Задания 11-13. ОГЭ 2016 Математика, И.В. Ященко. 36 вариантов. Решение

Задание 11. В трапеции ABCD известно, что AB=CD, угол BDA=22° и угол BDC = 45°. Найдите угол ABD. Ответ дайте в градусах.

Решение.

Так как у трапеции стороны AB=CD, то трапеция является равнобедренной, и, следовательно, углы . Угол

Рассмотрим треугольник ABD, в котором известен угол  и угол . Тогда, из условия, что в сумма углов в треугольнике равна 180 градусов, получаем угол

Ответ: 91.

Задание 12. На клетчатой бумаге с размером клетки 1x1 изображена трапеция. Найдите её площадь.

Решение.

Площадь трапеции можно найти как произведение полусуммы оснований трапеции (синие линии на рисунке) на ее высоту h (красная линия):

.

Из рисунка видно, что основания равны , а высота равна . Получаем значение площади трапеции:

.

Ответ: 15.

Задание 13. Какое из следующих утверждений верно?

1) Если диагонали параллелограмма равны, то он является ромбом.

2) Тангенс любого острого угла меньше единицы.

3) Сумма углов равнобедренного треугольника равна 180°.

Решение.

1) Не верно. В этом случае параллелограмм переходит в прямоугольник.

2) Не верно. Тангенс – это отношение противолежащего катета на прилежащий. У острого угла противолежащий катет может быть больше прилежащего, например, для угла в 60 градусов.

3) Верно. Сумма углов любого треугольника равна 180°.

Ответ: 3.

Автор: С.М. Балакирев
Формат книги: pdf
Дата написания: 2017 г.
Объем: 70 стр.
Темы раздела