Задание 24. Окружность пересекает стороны АВ и АС треугольника ABC в точках К и Р соответственно и проходит через вершины В и С. Найдите длину отрезка КР, если АК = 14 , а сторона АС в 2 раза больше стороны ВС.
Решение.
Пусть
сторона ,
тогда
, так
как она в 2 раза больше стороны BC по условию задачи. Теперь рассмотрим
четырехугольник CPKB, который вписан в окружность. Как известно, у
такого четырехугольника сумма противоположных углов равна 180 градусов, то есть
и
. Предположим, что угол
, тогда угол
, теперь, учитывая, что
углы
и
смежные, то угол
то
есть он равен углу .
Аналогично и для угла
.
Из равенства этих двух пар углов следует, что треугольники ACB и APK подобны друг
другу по двум углам.
Для подобных треугольников можно записать следующее соотношение:
,
откуда
и подставляя числовые значения, имеем:
.
Ответ: 7.
Для наших пользователей досутпны следующие материалы: