ЕГЭ и ОГЭ
Главная

Решение 2561. В трапеции ABCD основания AD и ВС равны соответственно 34 и 2, а сумма углов при основании AD равна 90°. Найдите радиус окружности, проходящей через точки А и В и касающейся прямой CD, если АВ = 24.

 

Задание 26. В трапеции ABCD основания AD и ВС равны соответственно 34 и 2, а сумма углов при основании AD равна 90°. Найдите радиус окружности, проходящей через точки А и В и касающейся прямой CD, если АВ = 24.

Решение.

Продлим боковые стороны трапеции до пересечения в точке Р (см. рис.).

Из условия ясно, что . Из подобия треугольников APD и ВРС получаем, что

,

то есть

откуда

Пусть окружность касается прямой CD в точке K, а O — её центр. Опустим из точки O перпендикуляр OM на хорду АВ. Точка М — середина АВ (перпендикуляр, проведенный из центра окружности к хорде в точке пересечения делит хорду пополам). Так как OMPK — прямоугольник, искомый радиус

Ответ: 13,5.


Другие задания:

Темы раздела

Для наших пользователей доступны следующие материалы: