ЕГЭ и ОГЭ
Главная

Решение 3836. Какое наименьшее количество дуг нужно заказать, чтобы расстояние между соседними дугами было не более 70 см?

 

Сергей Петрович решил построить на, дачном участке теплицу длиной 6 м. Для этого он сделал прямоугольный фундамент. Для каркаса теплицы Сергей Петрович заказал металлические дуги в форме полуокружностей длиной 5 м каждая и покрытие для обтяжки.

Отдельно требуется купить плёнку для передней и задней стенок теплицы. В передней стенке планируется вход, показанный на рисунке прямоугольником BCC1B1, где точки В, О и С делят отрезок AD на четыре равные части. Внутри теплицы Сергей Петрович планирует сделать три грядки по длине теплицы — одну центральную широкую грядку и две узкие грядки по краям. Между грядками будут дорожки шириной 60 см, для которых необходимо купить тротуарную плитку размером 20 см х 20 см.

Задание 1. Какое наименьшее количество дуг нужно заказать, чтобы расстояние между соседними дугами было не более 70 см?

Решение.

Вся длина теплицы составляет 6 м = 600 см. Разделим эту длину на 70 см и округлим результат до ближайшего наибольшего целого, получим:

то есть, нужно заказать 9 дуг + 1 первая дуга = 10 дуг.

Ответ: 10.

Задание 2. Сколько упаковок плитки необходимо купить для дорожек между грядками, если она продаётся в упаковках по 8 штук?

Решение.

В теплице 3 грядки, между которыми будут дорожки, т.е. всего две дорожки. Длина каждой дорожки равна длине теплицы – 600 см, а ширина – 60 см. Площадь одной дорожки 600∙60 = 36000 см2, а двух – 2∙36000 = 72000 см2. Тротуарная плитка имеет размеры 20х20 см с площадью 400 см2. Следовательно, на дорожки необходимо

72000:400 = 180 плиток

Так как плитки продаются в упаковках по 8 штук, то необходимо купить

 упаковки

(здесь  - округление до ближайшего наибольшего целого).

Ответ: 23.

Задание 3. Найдите ширину входа в теплицу. Ответ дайте в метрах с точностью до десятых.

Решение.

Ширина теплицы определяется диаметром полуокружности длиной 5 метров. Для вычисления радиуса такой полуокружности можно воспользоваться формулой длины окружности . Для полуокружности она будет выглядеть так: , откуда

и ширина теплицы, равна:

 м

Вход в теплицу – это длина отрезка BC. Так как AB=BO=OC=CD, то BC=D:2=R. Получаем ширину входа

 м

Ответ: 1,6.

Задание 4. Найдите ширину центральной грядки, если она в два раза больше ширины узкой грядки. Ответ дайте в сантиметрах с точностью до десятков.

Решение.

Условно представим теплицу с грядками: две по краям с шириной x см и одна центральная с шириной в 2 раза больше – 2x см. Между ними дорожки шириной 60 см.

Учитывая, что вся ширина теплицы примерно 3,2 м = 320 см, получаем уравнение:

То есть, ширина центральной грядки примерно 100 см.

Ответ: 100.

Задание 5. Сколько процентов составляет площадь, отведённая под грядки, от площади всего участка, отведённого под теплицу? Ответ округлите до целых.

Решение.

Из рисунка задания 4 видно, что площадь грядок составляет:

 см2,

а площадь всей теплицы

 см2.

Отношение площадей, равно:

То есть, площадь под грядки составляет 62,5% = 63% от всей площади теплицы.

Ответ: 63.

Видео по теме

Другие задания:

Темы раздела

Для наших пользователей доступны следующие материалы: