ЕГЭ и ОГЭ
Главная

Решение 3861. В трапеции ABCD боковая сторона АВ перпендикулярна основанию ВС. Окружность проходит через точки С и D и касается прямой АВ в точке Е. Найдите расстояние от точки Е до прямой CD, если AD = 6, ВС = 5.

Задание 26. В трапеции ABCD боковая сторона АВ перпендикулярна основанию ВС. Окружность проходит через точки С и D и касается прямой АВ в точке Е. Найдите расстояние от точки Е до прямой CD, если AD = 6, ВС = 5.

Решение.

Продлим стороны AB и CD так, чтобы они пересеклись в точке T. Пусть . По условию задания BC=5, AD=6, следовательно,

QD = AD-BC = 6-5 = 1

Из прямоугольного треугольника QCD, имеем:

Тот же самый угол можно выразить и так:

А, учитывая, что , можно записать отношение:

Далее, так как TE – касательная к окружности (по условию задания), а TD – секущая, то по теореме о касательной и секущей, имеем:

Треугольники TPE и TAD подобны по двум углам: , угол T – общий. Значит, . Следовательно,

Ответ: √30.


Другие задания:

Темы раздела

Для наших пользователей доступны следующие материалы: