ЕГЭ и ОГЭ
Главная

Решение 2849. Основанием пирамиды FABC является правильный треугольник ABC со стороной 36. Все боковые рёбра пирамиды равны 30. На рёбрах FB и FC отмечены соответственно точки K и N так, что BK = CN = 20. Через точки

Задание 14. Основанием пирамиды FABC является правильный треугольник ABC со стороной 36. Все боковые рёбра пирамиды равны 30. На рёбрах FB и FC отмечены соответственно точки K и N так, что BK = CN = 20. Через точки K и N проведена плоскость α, перпендикулярная плоскости ABC.

а) Докажите, что плоскость α делит медиану AM в отношении 2:7.

б) Найдите расстояние от точки B до плоскости α.

Решение.

а) Нужно доказать, что ME:EA = 2:7. Учитывая, что пирамида FABC – правильная, то KN параллельна плоскости ABC. Следовательно, сечение пересекает ABC по прямой PZ, которая параллельна BC и KN.

Рассмотрим треугольник FMA. Прямые FM и KN пересекаются в точке Q, а точка E – пересечение плоскости KNZP и прямой AM. Плоскости FMA и KNZ перпендикулярны плоскости ABC, следовательно, прямая QE перпендикулярна плоскости ABC и . Так как FB=30, а BK=20, то

Так как , то

б) Расстояние от точки B до плоскости KNZ – это отрезок ME. Треугольник ABC – равносторонний с AC=36 и MC=36:2=18. Рассмотрим прямоугольный треугольник AMC и по теореме Пифагора вычислим AM:

и

Ответ: 4√3


Другие задания:

Темы раздела

Для наших пользователей досутпны следующие материалы: