ЕГЭ и ОГЭ
Главная

Решение 5236. Длина зонта в сложенном виде равна 28 см и складывается из длины ручки (рис. 3) и трети длины спицы (зонт в три сложения). Найдите длину спицы, если длина ручки зонта равна 6,2 см.

 

Два друга Дима и Юра задумались о том, как рассчитать площадь поверхности зонта. На первый взгляд зонт кажется круглым, а его купол напоминает часть сферы (сферический сегмент). Но если присмотреться, то видно, что купол зонта состоит из двенадцати отдельных клиньев, натянутых на каркас из двенадцати спиц (рис. 1). Сферическая форма в раскрытом состоянии достигается за счёт гибкости спиц и эластичности ткани, из которой изготовлен зонт.

Дима и Юра сумели измерить расстояние между концами соседних спиц а. Оно оказалось равно 30 см. Высота купола зонта h (рис. 2) оказалась равна 29 см, а расстояние d между концами спиц, образующих дугу окружности, проходящей через вершину зонта, — ровно 116 см.

Задание 1. Длина зонта в сложенном виде равна 28 см и складывается из длины ручки (рис. 3) и трети длины спицы (зонт в три сложения). Найдите длину спицы, если длина ручки зонта равна 6,2 см.

Решение.

Треть спицы будет равна

28 – 6,2 = 21,8 см

следовательно, длина всей спицы:

21,8∙3 = 65,4 см

Ответ: 65,4

Задание 2. Поскольку зонт сшит из треугольников, рассуждал Дима, площадь его поверхности можно найти как сумму площадей треугольников. Вычислите площадь поверхности зонта методом Димы, если высота каждого равнобедренного треугольника, проведённая к основанию, равна 63,7 см. Ответ дайте в квадратных сантиметрах с округлением до десятков.

Решение.

Высота h = 63,7 см, проведенная к основанию a = 30 см, дает площадь каждого сегмента, равную:

Так как таких сегментов 12, то получаем полную площадь поверхности:

кв. см

Округляем до десятков, получаем 11470 кв. см.

Ответ: 11470

Задание 3. Юра предположил, что купол зонта имеет форму сферического сегмента. Вычислите радиус R сферы купола, зная, что ОС = R (рис. 2). Ответ дайте в сантиметрах.

Решение.

Рассмотрим прямоугольный треугольник с катетами d/2 и R-h и гипотенузой R.

По теореме Пифагора можно записать равенство:

Решаем уравнение относительно R, имеем:

Ответ: 72,5

Задание 4. Юра нашёл площадь купола зонта как площадь поверхности сферического сегмента по формуле S = 2πRh, где R — радиус сферы, a h — высота сегмента. Рассчитайте площадь поверхности купола способом Юры. Число π округлите до 3,14. Ответ дайте в квадратных сантиметрах с округлением до целого.

Решение.

Подставим в формулу площади купола зонта числовые значения, получим:

Округляем до целого, имеем: 13204 см. кв.

Ответ: 13204

Задание 5. Рулон ткани имеет длину 16 м и ширину 150 см. На фабрике из этого рулона были вырезаны треугольные клинья для 18 зонтов, таких же, как зонт, который был у Димы и Юры. Каждый треугольник с учётом припуска на швы имеет площадь 1000 кв. см. Оставшаяся ткань пошла в обрезки. Сколько процентов ткани рулона пошло в обрезки?

Решение.

Вычислим площадь ткани в кв. см, получим:

S = 16∙100∙150 = 240 000 см. кв.

Площадь клиньев для 18 зонтов, равна:

18∙12∙1000 = 216 000 см. кв.

Площадь обрезков:

240 000 – 216 000 = 24 000 см. кв.

Что составляет:

Ответ: 10


Другие задания:

Темы раздела

Для наших пользователей доступны следующие материалы: