Самообразование
Главная > ОГЭ, ЕГЭ Математика 2016 > ЕГЭ 2016. Математика, И.В. Ященко. Профильный уровень (36 вариантов)

Вариант 1. Задание 14. ЕГЭ 2016 Математика, И.В. Ященко. 36 вариантов. Решение. Ответ.

Задание 14. В правильной треугольной пирамиде SABC сторона основания АВ равна 12, а боковое ребро SA равно 13. Точки М и N — середины рёбер SA и SB соответственно. Плоскость a содержит прямую MN и перпендикулярна плоскости основания пирамиды.

а) Докажите, что плоскость а делит медиану CE основания в отношении 5:1, считая от точки С.

б) Найдите площадь многоугольника, являющегося сечением пирамиды SABC плоскостью a.

Решение.

а) Сечение (плоскость ) проходит через точки M и N, причем  - средняя линия. Это означает, что отрезок . По условию секущая плоскость перпендикулярна плоскости ABC, следовательно, она пересекает плоскость ABC по уровню PQ, причем . Таким образом, секущая плоскость представляет собой трапецию PMNQ.

Рассмотрим прямоугольный треугольник SOE, где SO – высота правильной пирамиды. Точка O лежит на пересечении медиан правильного треугольника (в основании пирамиды) и делит их в отношении 2:1, то есть

.

Точка K является серединой отрезка MN, причем , откуда следует, что . Так как , то . Таким образом, получаем, что .

б) Площадь сечения (трапеции) MNPQ можно найти по формуле

,

где ; ;  (величина SO находится по теореме Пифагора из прямоугольного треугольника SOC, учитывая, что OC – радиус описанной окружности вокруг равностороннего треугольника и равен ). Подставляем числовые значения в формулу площади, получаем:

.

Наша группа Вконтакте

Видео по теме