Самообразование
Главная > 2016: ЕГЭ, ОГЭ Математика, Физика > ЕГЭ 2016. Математика, И.В. Ященко. Профильный уровень (36 вариантов)

Вариант 31. Задание 6. ЕГЭ 2016 Математика, И.В. Ященко. 36 вариантов. Решение. Ответ.

Задание 6. Угол между биссектрисой и медианой прямоугольного треугольника, проведёнными из вершины прямого угла, равен 19°. Найдите меньший угол прямоугольного треугольника. Ответ дайте в градусах.

Решение.

Так как биссектриса делит угол пополам, то угол ACD будет равен

.

В прямоугольном треугольнике медиана, проведенная из вершины прямого угла равна половине основания, на которую она проведена. То есть треугольник ADC равнобедренный с равными сторонами AD=DC. У равнобедренного треугольника углы при основании равны, то есть угол A равен углу ADC и он является меньшим углом в треугольнике.

Ответ: 26.

Автор: С.М. Балакирев
Формат книги: pdf
Дата написания: 2017 г.
Объем: 70 стр.

Другие задания варианта:

Видео по теме