Самообразование
Главная > 2016: ЕГЭ, ОГЭ Математика, Физика > ЕГЭ 2016. Математика, И.В. Ященко. Профильный уровень (36 вариантов)

Вариант 25. Задание 14. ЕГЭ 2016 Математика, И.В. Ященко. 36 вариантов. Решение. Ответ.

Задание 14. Радиус основания конуса равен 12, а высота конуса равна 5.

а) Постройте сечение конуса плоскостью, проходящей через вершину конуса и взаимно перпендикулярные образующие.

б) Найдите расстояние от плоскости сечения до центра основания конуса.

Решение.

а) Взаимно перпендикулярные образующие дают прямой угол, следовательно, искомое сечение – прямоугольный треугольник ASB с гипотенузой AB и катетами AS и BS (см. рисунок).

б) Расстояние от плоскости сечения до центра основания конуса O есть отрезок OK (см. рисунок). Сначала найдем длину отрезка AB из прямоугольного треугольника ABS. Отрезки AS=SB=13 и по теореме Пифагора имеем:

.

Теперь найдем длину ON из прямоугольного треугольника AON. Так как треугольник AOB равнобедренный, то высота ON также является медианой, следовательно, катет AN=AB:2, и ON равна:

.

Найдем длину отрезка SN из прямоугольного треугольника ASB. Можно заметить, что SN – это высота, проведенного из прямого угла, а отрезки AN и BN – это радиусы описанной окружности вокруг треугольника. Следовательно, SN – это тоже радиус и  (см. рисунок).

Отрезок OK является высотой прямоугольного треугольника SON. Найдем его высоту из формулы площади

,

где  - формула площади для прямоугольного треугольника, т.е.

и расстояние OK равно

.

Автор: С.М. Балакирев
Формат книги: pdf
Дата написания: 2017 г.
Объем: 70 стр.

Другие задания варианта:

Видео по теме