Самообразование
Главная > 2016: ЕГЭ, ОГЭ Математика, Физика > ЕГЭ 2016. Математика, И.В. Ященко. Профильный уровень (36 вариантов)

Вариант 12. Задание 16. ЕГЭ 2016 Математика, И.В. Ященко. 36 вариантов. Решение. Ответ.

Задание 16. Окружность с центром О, вписанная в треугольник ABC, касается его сторон АВ, АС и ВС в точках С1, В1 и А1 соответственно. Биссектриса угла А пересекает эту окружность в точке Q, лежащей внутри треугольника АВ1С1.

а) Докажите, что C1Q — биссектриса угла AC1B1.

б) Найдите расстояние от точки О до центра окружности, вписанной в треугольник AB1C1 если известно что ВС = 7, АВ = 15, АС = 20.

Решение.

а) В треугольник ABC вписана окружность с центром в точке O. Стороны AB и AC – касательные к окружности и по теореме об отрезках касательных AC1=AB1 и, следовательно, треугольник AC1B1 – равнобедренный. AQ – биссектриса угла A по условию и в равнобедренном треугольнике AC1B1 биссектриса AA2 (продолжение AQ) является медианой и высотой. Следовательно, QA2 в треугольнике C1QB1 является также медианой и высотой, а сам треугольник C1QB1 – равнобедренный, так как .

По теореме об угле между касательной (AC1) и хордой (C1B1), имеем:

,

следовательно, C1Q – биссектриса угла AC1B1.

б) Рассмотрим треугольник AC1B1. Известно, что центр вписанной окружности находится в точке пересечения биссектрис углов, поэтому для AC1B1 центр вписанной окружности соответствует точке Q.

Найдем расстояние от точки O до точки Q, равный радиусу r вписанной окружности в треугольник ABC. Используя формулу площади треугольника ABC, можно записать

,

где p – полупериметр треугольника ABC. То есть, радиус r, равен:

Площадь треугольника ABC также можно найти по формуле Герона:

,

где a, b, c – стороны треугольника ABC.

Делаем вычисления. Полупериметр треугольника ABC, равен:

,

площадь треугольника ABC, равна:

и радиус вписанной окружности

,

то есть OQ = r = 2.

Ответ: 2.

Автор: С.М. Балакирев
Формат книги: pdf
Дата написания: 2017 г.
Объем: 70 стр.

Другие задания варианта:

Видео по теме