ЕГЭ и ОГЭ
Главная > 2018: ЕГЭ, ОГЭ, ВПР > ЕГЭ 2018. Математика. И.В. Ященко. 30 вариантов. Базовый уровень

Источник задания: Решение 3754. ЕГЭ 2018 Математика. И.В. Ященко. 30 вариантов.

Задание 19. Найдите четырёхзначное число, больше 4000, но меньше 6000, которое делится на 30 и каждая следующая цифра которого меньше предыдущей. В ответе укажите какое-нибудь одно такое число.

Решение.

Чтобы число делилось на 30, оно должно делиться на 10, а остаток делиться на 3 (или в обратном порядке). Признаком деления на 10 является цифра 0 в конце числа. Признаком деления числа на 3 является делимость на 3 суммы цифр числа. Таким образом, в диапазоне (4000; 6000) можно, например, взять такое число:

4320,

в котором каждая последующая цифра меньше предыдущей, сумма цифр 4+3+2+0 = 9 (кратно 3) и все число делится на 30.

Ответ: 4320.

Другие задания:

Темы раздела

Для наших пользователей досутпны следующие материалы: