Самообразование
Главная > 2017: ЕГЭ, ОГЭ Предметы > ЕГЭ 2017. Математика. И.В. Ященко. 36 вариантов. Профильный уровень
< Предыдущий Следующий >

Вариант 19. Задания ЕГЭ 2017 Математика, И.В. Ященко. 36 вариантов

1
Аня купила проездной билет на месяц и сделала за месяц 46 поездок. Сколько рублей она сэкономила, если проездной билет на месяц стоит 755 руб., а разовая поездка — 21 руб.?

Перейти к решению

 
2
На диаграмме показана среднемесячная температура воздуха в Минске за каждый месяц 2003 года. По горизонтали указываются месяцы, по вертикали — температура в градусах Цельсия. Определите по диаграмме, сколько месяцев в 2003 году средняя температура была отрицательной.

Перейти к решению

 
3
Найдите площадь параллелограмма, изображённого на клетчатой бумаге с размером клетки 1 см X 1 см (см. рис.). Ответ дайте в квадратных сантиметрах.

Перейти к решению

 
4
При артиллерийской стрельбе автоматическая система делает выстрел по цели. Если цель не уничтожена, то система делает повторный выстрел. Выстрелы повторяются до тех пор, пока цель не будет уничтожена. Вероятность уничтожения некоторой цели при первом выстреле равна 0,3, а при каждом последующем — 0,9. Сколько выстрелов потребуется для того, чтобы вероятность уничтожения цели была не менее 0,96?

Перейти к решению

 
5
Найдите корень уравнения .

Перейти к решению

 
6
В треугольнике ABC угол С равен 90°, АС = 5, . Найдите высоту CH.

Перейти к решению

 
7
На рисунке изображён график первообразной у=F(x) некоторой функции у=f(x), определённой на интервале (2; 13). Пользуясь рисунком, определите количество решений уравнения f(x) = 0 на отрезке [3;9].

Перейти к решению

 
8
В правильной четырёхугольной пирамиде высота равна 2, боковое ребро равно 4. Найдите её объём.

Перейти к решению

 
9
Найдите значение выражения .

Перейти к решению

 
10
Самые красивые мосты — вантовые. Вертикальные пилоны связаны огромной провисающей цепью. Тросы, которые свисают с цепи и поддерживают полотно моста, называются вантами.

На рисунке изображена схема одного вантового моста. Введём систему координат: ось Оу направим вертикально вдоль одного из пилонов, а ось Ох направим вдоль полотна моста, как показано на рисунке. В этой системе координат цепь моста имеет уравнение , где х и у измеряются в метрах. Найдите длину ванты, расположенной в 100 метрах от пилона. Ответ дайте в метрах.

Перейти к решению

 
11
Автомобиль выехал с постоянной скоростью 67 км/ч из города А в город В, расстояние между которыми равно 201 км. Одновременно с ним из города С в город В, расстояние между которыми равно 210 км, с постоянной скоростью выехал мотоциклист. По дороге он сделал остановку на 40 минут. В результате автомобиль и мотоцикл прибыли в город В одновременно. Найдите скорость мотоциклиста. Ответ дайте в км/ч.

Перейти к решению

 
12
Найдите точку минимума функции .

Перейти к решению

 
13
а) Решите уравнение .

б) Укажите корни этого уравнения, принадлежащие отрезку .

Перейти к решению

 
14
В правильной треугольной пирамиде SABC сторона основания АВ равна 60, а боковое ребро SA равно 37. Точки М и N — середины рёбер SA и SB соответственно. Плоскость a содержит прямую MN и перпендикулярна плоскости основания пирамиды.

а) Докажите, что плоскость a делит медиану СЕ основания в отношении 5:1, считая от точки С.

б) Найдите расстояние от вершины А до плоскости a.

Перейти к решению

 
15
Решите неравенство .

Перейти к решению

 
17
В двух областях есть по 160 рабочих, каждый из которых готов трудиться по 5 часов в сутки на добыче алюминия или никеля. В первой области один рабочий за час добывает 0,1 кг алюминия или 0,1 кг никеля. Во второй области для добычи х кг алюминия в день требуется х^2 человеко-часов труда, а для добычи у кг никеля в день требуется у^2 человеко-часов труда.

Для нужд промышленности можно использовать или алюминий, или никель, причём 1 кг алюминия можно заменить 1 кг никеля. Какую наибольшую массу металлов можно добыть в двух областях суммарно для нужд промышленности?

Перейти к решению

 
19
Имеется 8 карточек. На них записывают по одному каждое из чисел -1, 3, 4, -5, 7, -9, -10, 11. Карточки переворачивают и перемешивают. На их чистых сторонах заново пишут по одному каждое из чисел -1, 3, 4, -5, 7, -9, -10, 11. После этого числа на каждой карточке складывают, а полученные восемь сумм перемножают.

а) Может ли в результате получиться 0?

б) Может ли в результате получиться 1?

в) Какое наименьшее целое неотрицательное число может в результате получиться?

Перейти к решению

 

Автор: С.М. Балакирев
Формат книги: pdf
Дата написания: 2017 г.
Объем: 70 стр.
< Предыдущий Следующий >
Темы раздела