ЕГЭ и ОГЭ
Главная > 2016: ЕГЭ, ОГЭ Математика, Физика > ЕГЭ 2016 Математика. Тренировочные варианты

Источник задания: Решение 3249. Тренировочный вариант ЕГЭ 2016 Математика. Ответ

Задание 14. Дана правильная треугольная пирамида SABC, основание которой ABC. Все ребра пирамиды равны 8. Было проведено сечение через середины ребер АВ и ВС и вершину S. Найдите площадь этого сечения.

Решение.

По условию задачи точка M – середина отрезка AB, а точка N – середина отрезка BC. Отсюда следует, что MN – средняя линия треугольника ABC и равна

.

Так как пирамида является правильной, то отрезки SM=SN равны и сечение SMN представляет собой равнобедренный треугольник. Найдем длину отрезка SN из прямоугольного треугольника SBN, у которого сторона SB=8, а сторона BN=4. По теореме Пифагора имеем:

.

Найдем высоту сечения SH из прямоугольного треугольника SHN, в котором HN=2, а , получим:

.

Таким образом, площадь сечения равна

.

Ответ: .

Темы раздела

Для наших пользователей досутпны следующие материалы: