Самообразование
Главная > 2016: ЕГЭ, ОГЭ Математика, Физика > ЕГЭ 2016. Математика, И.В. Ященко. Профильный уровень (36 вариантов)
< Предыдущий Следующий >

Вариант 17. Задания ЕГЭ 2016 Математика, И.В. Ященко. 36 вариантов

1
Бегун пробежал 100 метров за 10 секунд. Найдите среднюю скорость бегуна на дистанции. Ответ дайте в километрах в час.

Перейти к решению

 
2
На диаграмме показан средний балл участников 10 стран в тестировании учащихся 4-го класса по математике в 2007 году (по 1000-балльной шкале). По данным диаграммы найдите число стран, в которых средний балл ниже, чем в Нидерландах.

Перейти к решению

 
3
Найдите тангенс угла АОВ.

Перейти к решению

 
4
Помещение освещается фонарём с тремя лампами. Вероятность перегорания одной лампы в течение года равна 0,3. Найдите вероятность того, что в течение года хотя бы одна лампа не перегорит.

Перейти к решению

 
5
Решите уравнение .

Перейти к решению

 
6
В треугольнике ABC АС = ВС, АВ = 72, . Найдите высоту CH.

Перейти к решению

 
7
На рисунке изображены график функции у = f(x) и касательная к нему в точке с абсциссой . Найдите значение производной функции f(x) в точке .

Перейти к решению

 
8
Около конуса описана сфера (сфера содержит окружность основания конуса и его вершину). Центр сферы находится в центре основания конуса. Образующая конуса равна . Найдите радиус сферы.

Перейти к решению

 
9
Найдите значение выражения .

Перейти к решению

 
10
При температуре 0°С рельс имеет длину  = 10 м. При возрастании температуры происходит тепловое расширение рельса, и его длина, выраженная в метрах, меняется по закону , где  — коэффициент теплового расширения, t° — температура (в градусах Цельсия). При какой температуре рельс удлинится на 9 мм? Ответ выразите в градусах Цельсия.

Перейти к решению

 
11
Коля и Митя выполняют одинаковый тест. Коля отвечает за час на 12 вопросов теста, а Митя — на 21. Они одновременно начали отвечать на вопросы теста, и Коля закончил свой тест позже Мити на 105 минут. Сколько вопросов содержит тест?

Перейти к решению

 
12
Найдите наибольшее значение функции  на отрезке .

Перейти к решению

 
13
а) Решите уравнение .

б) Укажите корни этого уравнения, принадлежащие отрезку .

Перейти к решению

 
14
В основании четырёхугольной пирамиды SABCD лежит прямоугольник ABCD со сторонами АВ = 4 и ВС = 3. Длины боковых рёбер пирамиды SA = √11 , SB = 3√3, SD = 2√5.

а) Докажите, что SA — высота пирамиды.

б) Найдите угол между прямой SC и плоскостью ASB.

Перейти к решению

 
15
Решите неравенство .

Перейти к решению

 
16
В треугольнике ABC известно, что угол BAC = 60°, угол ABC = 45°. Продолжения высот треугольника ABC пересекают описанную около него окружность в точках М, N, Р.

а) Докажите, что треугольник MNP прямоугольный.

б) Найдите площадь треугольника MNP, если известно, что ВС = 6.

Перейти к решению

 
17
31 декабря 2014 года Михаил взял в банке некоторую сумму в кредит под 10% годовых. Схема выплаты кредита следующая: 31 декабря каждого следующего года банк начисляет проценты на оставшуюся сумму долга (то есть увеличивает долг на 10%), затем Михаил переводит в банк 2 928 200 рублей. Какую сумму взял Михаил в банке, если он выплатил долг четырьмя равными платежами (то есть за четыре года)?

Перейти к решению

 
19
Все члены конечной последовательности являются натуральными числами. Каждый член этой последовательности, начиная со второго, либо в 10 раз больше, либо в 10 раз меньше предыдущего. Сумма всех членов последовательности равна 5292.

а) Может ли последовательность состоять из двух членов?

б) Может ли последовательность состоять из трёх членов?

в) Какое наибольшее количество членов может быть в последовательности?

Перейти к решению

 

Автор: С.М. Балакирев
Формат книги: pdf
Дата написания: 2017 г.
Объем: 70 стр.
< Предыдущий Следующий >
Видео по теме