Самообразование
Главная > 2016: ЕГЭ, ОГЭ Математика, Физика > ЕГЭ 2016. Математика, И.В. Ященко. Профильный уровень (36 вариантов)

Вариант 6. Задание 19. ЕГЭ 2016 Математика, И.В. Ященко. 36 вариантов. Решение. Ответ.

Задание 19. Каждый из группы учащихся сходил в кино или в театр, при этом возможно, что кто-то из них мог сходить и в кино, и в театр. Известно, что в театре мальчиков было не более 3/10 от общего числа учащихся группы, посетивших театр, а в кино мальчиков было не более 5/12 от общего числа учащихся группы, посетивших кино.

а) Могло ли быть в группе 8 мальчиков, если дополнительно известно, что всего в группе было 16 учащихся?

б)      Какое наибольшее количество мальчиков могло быть в группе, если дополнительно известно, что всего в группе было 16 учащихся?

в) Какую наименьшую долю могли составлять девочки от общего числа учащихся в группе без дополнительного условия пунктов а  и  б?

Решение.

а) Если группа состоит из 3 мальчиков, посетивших только театр, 5 мальчиков, посетивших только кино, и 8 девочек, сходивших и в театр, и в кино, то условие задачи выполнено. Значит, в группе из 16 учащихся могло быть 8 мальчиков.

б) Предположим, что мальчиков было 9 или больше. Тогда девочек было 7 или меньше. Театр посетило не более 3 мальчиков, поскольку если бы их было 4 или больше, то доля мальчиков в театре была бы не меньше , что больше 3/10. Аналогично кино посетило не более 5 мальчиков, поскольку , но тогда хотя бы один мальчик не посетил ни театра, ни кино, что противоречит условию.

В предыдущем пункте было показано, что в группе из 16 учащихся могло быть 8 мальчиков. Значит, наибольшее количество мальчиков в группе — 8.

в) Предположим, что некоторый мальчик сходил и в театр, и в кино. Если бы вместо него в группе присутствовало два мальчика, один из которых посетил только театр, а другой — только кино, то доля мальчиков и в театре, и в кино осталась бы прежней, а общая доля девочек стала бы меньше. Значит, для оценки наименьшей доли девочек в группе можно считать, что каждый мальчик сходил или только в театр, или только в кино.

Пусть в группе m1 мальчиков, посетивших театр, m2 мальчиков, посетивших кино, и d девочек. Оценим долю девочек в этой группе. Будем считать, что все девочки ходили и в театр, и в кино, поскольку их доля в группе от этого не изменится, а доля в театре и в кино не уменьшится.

По условию , значит, . Тогда ,

поэтому доля девочек в группе:

Если группа состоит из 3 мальчиков, посетивших только театр, 5 мальчиков, посетивших только кино, и 7 девочек, сходивших и в театр, и в кино, то условие задачи выполнено, а доля девочек в группе равна 7/15.

Ответ: а) да; б) нет; в) 7/15.

Автор: С.М. Балакирев
Формат книги: pdf
Дата написания: 2017 г.
Объем: 70 стр.

Другие задания варианта:

Видео по теме