Самообразование
Главная > 2016: ЕГЭ, ОГЭ Математика, Физика > ЕГЭ 2016. Математика, И.В. Ященко : 30 вариантов типовых тестовых заданий и 800 заданий части 2

Вариант 14. Задание 19. ЕГЭ 2016. Математика, И. В. Ященко. 30 вариантов типовых тестовых заданий. Решение

Задание 19. На доске было написано 20 натуральных чисел (необязательно различных), каждое из которых не превосходит 40. Вместо некоторых из чисел (возможно, одного) на доске написали числа, меньшие первоначальных на единицу. Числа, которые после этого оказались равными 0, с доски стёрли.

а) Могло ли оказаться так, что среднее арифметическое чисел на доске увеличилось?

б) Среднее арифметическое первоначально написанных чисел равнялось 27. Могло ли среднее арифметическое оставшихся на доске чисел оказаться равным 34?

в) Среднее арифметическое первоначально написанных чисел равнялось 27. Найдите наибольшее возможное значение среднего арифметического чисел, которые остались на доске.

Решение.

а) Да, может, например, если взять 19 чисел, равных 10, а 20-е равное 1, то после уменьшения 20-го числа на 1, оно становится равным 0 и получается среднее значение уже не 20 чисел, а 19-ти, то есть имеем:

- первоначальное среднее значение: ;

- среднее значение после изменения: .

Как видим, второе среднее значение стало больше исходного.

б) Предположим, что для выполнения этого условия нужно взять  единиц, затем взять  чисел  и одно число , всего 20 чисел. Их среднее арифметическое будет равно

,

а после стирания единиц должны получить

,

то есть имеем систему уравнений:

Вычтем из первого уравнения второе, получим:

Таким образом, для выполнения условия данного пункта нужно взять дробное количество чисел, что невозможно в рамках данной задачи.

Ответ: нет.

в) Чтобы получить максимальное среднее оставшихся на доске чисел, изначально нужно записать набор чисел, состоящих из наибольшего числа единиц (которые, затем, будут стерты с доски), а остальные числа должны быть максимальными. Запишем это условие в виде

,

где  - число единиц;  - 20-е число (оно выбирается так, чтобы обеспечить среднее равным 27). Отсюда имеем:

Из полученного выражения видно, что минимальное значение , при котором получим максимальное значение . Таким образом, имеем последовательность чисел, сумма которых равна

,

и среднее арифметическое

,

а после стирания единиц, имеем:

.

Ответ: .

Автор: С.М. Балакирев
Формат книги: pdf
Дата написания: 2017 г.
Объем: 70 стр.