Самообразование
Главная > 2016: ЕГЭ, ОГЭ Математика, Физика > ЕГЭ 2016 Математика, И.В. Ященко : 30 вариантов экзаменационных работ (профильный уровень)

Вариант 4. Задание 14. ЕГЭ 2016 Математика, И.В. Ященко. 30 вариантов. Решение. Ответ.

Задание 14. Радиус основания конуса равен 4, а высота конуса равна 3√2. В конусе проведено сечение плоскостью, проходящей через вершину конуса и хорду

окружности основания, длина которой равна 4√2.

а) Докажите, что плоскость, проходящая через середину этой хорды и высоту конуса, перпендикулярна этой хорде.

б) Найдите угол между плоскостью основания и плоскостью сечения.

Решение.

а) Рассмотрим равнобедренный треугольник AOB, у которого стороны AO=OB=r, где r – радиус окружности. По условию точка P – середина отрезка AB, следовательно, . Рассмотрим равнобедренный треугольник AMB, со сторонами AM=MB, равные длине образующей конуса. Из условия того, что P – середина отрезка AB следует . Таким образом, имеем, что

и, следовательно, .

б) Угол между плоскостью основания и плоскостью сечения соответствует углу . Рассмотрим прямоугольный треугольник MOP (так как MO – высота конуса). Тогда тангенс угла  равен

.

Высота  дана по условию задачи. Найдем длину отрезка PO. Рассмотрим прямоугольный треугольник APO, в котором AO=4, а . Тогда по теореме Пифагора, длина PO будет равна

и

,

соответственно,

.

Ответ: .

Автор: С.М. Балакирев
Формат книги: pdf
Дата написания: 2017 г.
Объем: 70 стр.

Другие задания варианта: